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Introduction 

In literature, we observed that most quantum mechanics 

problems cannot be solved analytically to obtain exact 

solutions. Rather only few are solvable amidst making some 

assumptions or by the use of some mathematical models. This 

goes to show that approximation methods are developed and 

employed to solve these problems. Two primary 

approximation techniques are the Variational method and the 

Perturbation method (Ojeda-Guillien et al., 2016). However, 

there abounds other technique such as the semi-classical 

approximation method also known WKB method. We shall in 

our subsequent sections discuss the various approximation 

methods without bothering us with the derivation of these 

methods. Dashen et al. (1974) developed the semiclassical 

methods and in (1975) developed the quantum theory of 

solitons using the path integral approach. They applied semi-

classical methods to the Sine – Gordon theory, a one – 

dimensional field theory characterized of having collective 

excitations called solitons. Stuart (2019) studied the 

interaction of a scalar quantum field   with fixed (external) 

electromagnetic field 
estA dx

 in two dimensional space – 

time, in his paper “Hamiltonian quantization of solitons in 
4

1 1   quantum field theory I, the semi-classical mass shift”. 

Kantorovich and Krylov (2018) made landmark contributions 

in the literature of computational methods as domiciled in 

their textbook titled “Approximate Methods of Higher 

Analysis”. 

The rest of this paper will consist the following: section two 

will dwell on the discussions on the various approximation 

methods mainly in quantum mechanics; section three contains 

the weaknesses and strengths of these methods. Section four, 

dwell on some numerical problems using the methods and 

finally section five, the summary and conclusion. 

 

Computational Methods in Quantum Mechanics 

In this section, we shall look at four different approximation 

methods review their approaches to problem solving, areas of 

application and possible extensions. 

Variational approximation method 

This method also known as the Rayleigh - Ritz approximation 

method applies the variational principle to obtain an estimate 

of the ground state energy of the physical system under 

investigation. One essential quality of this method is 

domiciled in the fact that the ground state energy determined 

through this measure generates an upper bound for the true 

ground state energy. It becomes important to locate the 

ground state energy and the initial few states (minute quantum 

numbers). From some other environment, we have seen that 

the Schrodinger time – independent wave equation, 

 ,p pH E      (2.1) 

Where p  is the quantum number, H is a Hamilton, is a 

wave functional, is often difficult to solve for exact solutions 

and so we find approximate solution through this approach. 

Equation (2.1) is solved for particular states; for instance, the 

ground state or the first initial state when we employ a trial 

wave function which is physically reasonable. By this, we 

mean, one that possesses the features of the unknown exact 

wave function. This wave function  contains a parameter 

 which is varied over a span until, 

*

*

( ) ( )

( ) ( )

x H x dx
H E

x x dx

 

 

 

 
 



  (2.2) 

is stationary. i.e. 0
dE

d


    (2.3) 

The variational method employs the variational principle 

which states that the exact ground state energizes eigen value 

needed is the minimum value of E  or less, leads to the 

conclusion that  

 0 0( ),E E   

Where 0
dE

d


 , for 0     (2.4) 

We remark here that the mean value of the Hamiltonian 

generated while using any trial wave function is never smaller 

than the exact true ground state energy of the system. 

However, it is exactly equal to it only if the trial wave 

function is equal to the ground state function. For this reason, 

we can say that the Rayleigh – Ritz approximation method is 

essential for states with low quantum numbers. It therefore 

serves or provides the upper bound of the ground state energy 

level. 

Semi-classical (WKB) approximation method 
The Semi-classical approximation method is due to Wentzel, 

Kramers and Brillouin, hence it is often also known as the 

WKB method. It is suitable for motions in a slowly varying 

potential and provides a powerful approach to examine the 

dynamics of quantum, field theory in particular as in the 

classical series of papers by Dashen – Hasslacher – Wereu 

and Gold – Stone – Jackin. 

Through the semi – classical method, we can obtain solutions 

of the full non-linear interacting classical equation of motion 
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of various models which project as stable field configuration 

space time with particle properties. The idea begins with 

writing the wave function as in   

 
( )/( ) ( ) iB x hx A x e     (2.5) 

Where A(x) and B(x) are functions must be of some specified 

dimensions Perisco and Enrisco 

(1957). Then demand that the form satisfies the time – 

independent Schrodinger equation. Obtain the first and second 

derivatives of equation (2.5). Thereafter we have; 

 

 

2 2
2

2

2
[ ( ( ) ( ) ( ) ( ) ( ) ( )( ( )) ]

2

h i i i
A x A x B x A x B x A x B x

m h h h
          (2.6) 

 

As 0h in limit, this formally the same as assuming that 

high – order derivative of the wave function amplitude is 

small. By considering the different powers of h, in (2.6), we 

solve the Schrodinger equation. 

This approximation approach deals with situations in which h 

is regarded as small compared to the action (energy  time or 

momentum  distance). 

The processes employed are more or less semi- classical and 

are thus endeared for the cases of large quantum numbers. In 

order to obtain the energy levels for a bounded system, we use 

the result  
2

1

2 1
( ) 2 , 0,1,2

2

x

x

n
A x dx dx h n 

 
    

           (2.7) 

where the integral is the conventional integral over one period 

of the classical motion over one period of the classical motion, 

which is twice the integral between turning points. Using 

equation (2.7), we have, 

 2 ( )m E V      (2.8) 

     = ( ,E x )   

while the turning points also rely on the unknown energy E. 

 is a function of E and the solution  

 

The WKB method does not rely on integrals ie properties of 

the theory understudy and thus can be used both as 

complimentary or alternative approach to the Form Factor 

Perturbation approximation method for non-integral models. 

Perturbation approximation method (PAM)  

The whole Hamiltonian is often assumed to be divided into 

two sections viz 0Ĥ , the main part and the Ĥ  , a small 

section which acts as a perturbation, i.e. a small check in the 

system, while using the PAM. Hence, 

 0
ˆ ˆ ˆH H H       (2.9) 

In discussing perturbation theory, Heisenberg, S. and E. 

Schrodinger (1926), introduced time-independent perturbation 

after his theories in wave mechanics. The foundation of time-

independent perturbation has its roots in the work of Lord 

Rayleigh; hence, this type of perturbation is often called 

Rayleigh – Schrodinger perturbation approximation. 

Looking at equation (2.9) if Ĥ  is time-independent, then the 

theory of stationary perturbation is employed with the 

dominated effect of shifting the energy levels. However, if

Ĥ  is time-dependent, then the time-dependent perturbation 

theory is applied with dominant effect causing transaction  

between energy levels thus can lead to scattering. 

 In either case, it is assumed that  

(i) Everything about 0Ĥ is well known, that is 

both the energy eigen-states 
's

n and the 

energy eigen-values
0's

nE . 

(ii) Ĥ  is small, thus the true energy eigen-states 

and the corresponding energy eigen-values are 

only slightly different from those of 0Ĥ . 

(iii)  The 
's

n constitute a complete set 

 

(0) (0)ˆ | |n n nH E     (2.10) 

The essence of equation (2.10) is to obtain corrections to 
(0)

nE  and 
0

n which gets closer and closer to the exact eigen-

state n with exact eigen-energies n . With Ĥ  , a matrix of 

a dimension of energy, the ideas of small cannot be attached 

directly without comparing corresponding elements of Ĥ 

some energy scale. We may introduce some quantity   in 

place of Ĥ with Ĥ  and allow 0  . At the end, set 

1  . Hence, we can solve the eigen-value equation  

 0
ˆ ˆ( ) nH H  = |n nE    (2.11) 

By assuming the existence of expansions, 

nE  (0) (1) 2 (2) ( )k k

n n n nE E E E     

  (2.12) 
(0) (1) 2 (2)(n n n n nz       

( )k k

n    (2.13) 

where the global normalization factor has to be located at the 

end of the calculation(this permits one to demand that the 

wave function correction is orthogonal to the un-perturbed 

state). 

(I)  Time – independent Perturbation Approximation 

Method (TIPAM) 

We shall examine this method under the headings: Non-

generate and the Degenerate perturbation approximation  

(a) Non-degenerate TIPAM  

In this case, we first assume that the energy level to 

be examined is not degenerate by any  

approximation into first order. Then, the correction to the nth 

energy level will be given by 

 

*

(1)

*

ˆ
n n

n

n n

H dx

E

dx

 

 











 




   (2.14) 

           = 
* ˆ
n nH dx 





    (2.15) 

Given that n ’s are normalized. 
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Using equations (2.13) and (2.15), we obtain the first order 

approximant by  

 
(1) 0 (1)

n n nE E E   

 
0 ˆ| |n n n nE H      (2.16) 

for normalized n ’s  

Thereafter, the corrections to higher orders of approximation 

become much more complicated; however can be obtained as 

by definition are expected to decrease in importance. Based 

on this remark, we need to observe the following: 

(i) The change in energy, to the first order 

approximation, of the nth energy level of the 

system, is (approximately) the expectation value of 

the perturbated Hamiltonian, in the nth, run 

perturbed state. 

(ii) Suppose the above treatment is inadequate, for 

example, if ˆ| | 0n H n  , then one has reason 

to go for  higher orders of approximation. For 

instance, the correction to the energy  nE level for 

the second order of approximation is given by  
2

(2)

ˆ| |n k

n

k n k

H
E

E E

 
 


   (2.17) 

where is excluded from the summation. This shows clearly 

that the correction to the ground state energy level, to the 

second order approximation is always negative. 

(iii) Within this class of perturbation method, only 

the relative phases of the components the 

function to states (wave functions) change with 

time so that the probability of locating the 

value nE in a measurement of the energy is 

constant. With this, we state that stationary 

perturbation does not induce any transactions 

between levels. Any other observables whose 

corresponding operator commutes with Ĥ are 

also constant. 

(b) Degenerate Case 

Consider the expression  

 

  ∑
|〈𝜓𝑛|𝐻̂

′|𝜓𝑘〉|
2

𝐸𝑛−𝐸𝑘

𝑛

𝑘

   (2.18) 

and 

( )k

n =  -
( 1) ln

(0) (0)

ˆ
k

l

l n l n

H

E E
 

 
    (2.19) 

 

 

 

We know that the second order correction to energy as 

 
(0) (1)ˆ| |n nH  =

(2) (2)

(0) (0)

ˆ ˆ
nl

n n

l n l n

H H
E E

E E

 
  


  

 

Thus, the expression for 
(2)

n will be 

 

    
(2) (0) ln

2(0) (0) (0) (0) (0) (0)

ˆ ˆ ˆ ˆ
lk kn n

n l

l n l n l n k n l n

H H H H

E E E E E E
 

 

    
  

    

    (2.20) 

 

 

The perturbation theory fails when the denominators in 

expressions for 
( )k

nE and 
( )k

n  are either zero or comparable 

to the mixing matrix element. Inspite of this, there are 

essential situations or cases when the condition of validity of 

the perturbation theory is violated only for two of the lots, say 

N, isolated levels which do occur near degenerate. For the 

case, where the energy level of concern is n – fold degenerate, 

such that n orthonormal eigen-functions all correspond to the 

same energy level, however such that the stationary 

perturbation theory is applicable, then these n-eigen-functions 

are used as the basis functions in getting the n n matrix 

representation of Ĥ   

perturbing potential. We may thus constitute the corrections to 

the first order approximations of the degenerate energy level. 

With this, we have fully or partially removed or not removed 

at all; however obtain a mere shift as the eigen-values are 

respectively all different, partially different or all coincident. 

II   Time – Dependent Perturbation 

Here the perturbation part of the whole Hamiltonian is time – 

dependent such that the presence of time – varying external 

forces, the time –dependent permutation theory is applied. 

Considering such situation, a system in an eigen-state | k at 

time t = 0 can change character, under the influence of the 

external force, so that at a later time t, the predominant 

component of the wave function is in a different state | m . 

This amounts to a transition from | k to | m . 

Similarly, the expectation value of the energy of the system 

changes from kE
 
to mE . The external force produces the 

work done from the difference in energy and it can be shown 

that the law of conservation of energy is an automatic result of 

the quantum treatment. 

 Two essential deductions can be made from the 

above discussion. 

i) The probability amplitude for the system, initially in 

state | k , will after time t, and in the presence of 

the perturbation ˆ ( )H t remain in the state | k and 

is given by  

1

0

ˆ ˆexp 1 1k kk kk

i i
S H dt H dt

h h

 
      
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ii) The probability amplitude in the same condition 

above but in the presence of the perturbation 

ˆ ( )H t transfer into the state | m , is given by  

 1

0

ˆ k n

t
E E

h
m kk

i
S H e dt

h

 
   (2.21) 

so that 
2

mC is the probability of the system transferring 

from state | k to state | m after time t. 

Under these conditions, we experience a variety of 

conclusion, such as constant cooperation and perturbation 

harmonic in time. In constant perturbation, Ĥ  is either time 

dependent while switched on at t = 0 and off at time t or  

ˆ ( )H t is time independent, so that  

 ˆexpk kk

t
S tH

h

 
  

 
   (2.22) 

which corresponds to an energy shift ˆ t

kkH , in agreement with 

first order stationary perturbation result. 

Similarly, for mC , we get  

  
1 ˆ expm mk k m

t
S H i E E dt

h h

 
       

       = 

 

 
0

exp
1 ˆ

1

t

k n

mk

k n

t
i E E

h
H

h
i E E

h

 
   

 

 

  

 

 

exp 1
ˆ

k m

m mk

k m

t
i E E

h
S H

E E

 
    


  (2.23) 

Thus, the probability of locating the system in the state | m

after time t is given by 

 
 

2 2

2

2

ˆ
exp 1

mk

m k m

k m

H t
S i E E

hE E

  
     

 

Hence,  

 
   

2

2

2

ˆ
2 1 cos

t
mk

h
m k m

k m

H
S E E

E E

  
   

 
 

    =

 
 

2

2

ˆ2
1 cos

t
mk

h
k m

k m

H
E E

E E

  
  

 
 

  
 

 

2
2 2

22

2

inˆ4

4

t

h
k m

mk
m

k m

s E E tH
EtE E

h

 
 

  
 

 

  (2.24) 

As the limit of 
k mE E , we realized that  

 

2

2 2

2

ˆ
mk

m

H
S t

h


    (2.25) 

We can see that the probability of transition within the non-

continuous degenerate situation grows as the square of time 

timet. The above discussion dwells on individual final states 

in locating their transition probability per unit. However, if the 

final states considered together as a bundle are continuous so 

that they are described by a density of states, ( )E , then 

the transition probability per unit time, W is given by 

 
22

( ) mk

d
W E H

dt h

 
     (2.26) 

This is the Fermi Golden Rule, applicable in situations of 

weak perturbations, where  , the transition probability is  

2

2
sin ( )

2( ) 4
( )

m k m k

k m

m mk

E E E E k m

tE E
hS t H

E E


 


 


   

where perturbation harmonic in time displays a character in 

which the Hamiltonian is explicitly 

time – dependent and thus possesses a harmonic, time 

dependence. In such a situation, the perturbation, assume the 

form ( , )H x t such as  

(i) ˆ ˆ( , ) ( ) i tH x t H x e   or ˆ ( )H x cos t  

(ii) ˆ ( , )H x t = ˆ ( )sinH x t  or ˆ ( )H x cos t  

then for the first pair, we have  

  

 

2 2
22

2

sin
ˆ( ) 4

t
h

k m

m mk

k m

E E h
S t H

E E h





   
 

      (2.27) 

indicating that the two scenarios lead to the transition from 

| k state to | m with appreciable probability only at 

m kE E h  . In a similar situation, with (ii) i.e. with 

ˆ ( )sinH x t , 

 

 

 
 

 

 

  
exp[ ( 1] exp[ ( 1]( )

( )
2 ( )

t t
h h

m k m kmk
m

m k m k

i E E h i E E hH x
S t

i E E h E E h

 

 

      
   

     

 

Or ˆ ( )cos :H x t  

  

   

[ ( ) ] [ ( ) ]
1 1 1ˆ( ) ( )

2 [ ( ) [ ( )

m k m k
t tt E E h t E E h
h h

m mk

m k m k

e e
S t H x

h E E h E E h

 

 

      
  

     
   (2.28) 

 

Weaknesses and strengths of APM 

We shall discuss in this section the merits and demerits of the 

various methods so far surveyed in quantum mechanics. 

In Perturbation Approximation Method, one of the merits of 

this method lies in an admixture of states with l n being 

small as long as  
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(0) (0)

1lN

l n

V

E E
 

and the sum over l  converges fast enough. This is a major 

condition which justifies the use or application of the 

perturbation theory. Secondly, the PAM turns a child of 

necessity, where the Hamiltonian can be written as an exact 

solvable piece plus small correction.  

This method is equally saddled with some difficulties among 

which are: 

To locate corrections to 
(0)

n and
(0)

nE , which draw us closer 

to the exact eigen- states with exact                                              

eigen-energies
n under the assumptions that Ĥ is small. As 

long as Ĥ is small and with its matrix form and a dimension 

of energy, the notion of small cannot be attached to it directly 

without comparing matrix elements of Ĥ to some energy 

scale. Secondly, the need to know the wave-function 

corrections up to 
( 1)k

n 
to find 

( )k

n , which is then used to 

determine 
( )k

n persists in higher orders, making the scheme 

slightly increasing in complexity for large k. 

It is a fact that the PAM fails when the denominator in the 

expressions for 
( )k

nE  and 
( )k

n are either zero or comparable 

to the mixing matrix element i.e. when  

 
( ) (0) (0)

ln
ˆk

n l nE E E H  . 

The Variational Approximation Method (VAM) in its 

standard form enables us to find ground state properties in a 

complex system. With trial states containing hundreds and 

even thousands of variational parameters, the evaluation and 

minimization of the cost functional J is done by computers ( 

in the multi-dimensional Hilbert space of particle coordinates, 

J is often simulated by Monte Carlo). The most recent tools 

employed here, are from quantum information science when 

Vrieze and Verstraete (2017) introduced matrix product and 

tensor network states. A glaring example, is quantum 

chemical calculations where people can do 200 electrons and 

calculate energies with relative accuracy of about 0.1%, a 

remarkable achievement. VAM is a powerful tool for 

examining the dynamics of quantum field theory in particular, 

as in the classical series of papers by Mashens – Hasslacher – 

Wereu and Goldstone – Jackson. The method empowers us to 

obtain solutions of the full non-linear interacting classical 

equation of motion of various models, which projects as stable 

field configuration in space – time with particle properties. 

The Semi-classical Approximation Method (SAM) 

The method paves way for the link between quantum 

mechanics and classical mechanics.  

It is also an advantageous tool for locating accurate results 

under circumstances when the potential is relatively smooth. 

There is also, good physical concern for this functional form. 

For instance, it is a fact that a particle travels in a constant 

potential is described by a plane wave function 
ipxDe with

2 ( )p m E V  . Thus, if this potential is smooth, i.e., 

does not change much on the state, then locally,  the plane 

wave described should be also valid; however with locally  

defined momentum ( )x adjusted to the current value of the 

potential,  we observed that the only 

difficulty with the replacement  

 0

ˆ( ) 2 ( ( ))
x

x m E H x   dx   (2.29) 

is that, if we do something with the wave assumption then the 

current density 
2

( ) /i c x m , will thus decrease while 

for smooth potentials we do not expect any reflections. The 

Semi-classical approximation method is characterized of some 

matching conditions. 

One of such condition, is that near the points, where 

( )E V x called the classical turning points, the semi-

classical momentum goes to zero. This invalidates the 

condition  

( )
( )

( ) 2

h x
L X

x



 
    (2.30) 

where L is the length scale over which the function ( )A x

changes greatly, so as 
2

( )
A

A x
l

   results. However, 

equation (2.30) leaves with an incomplete description, such 

that if we have been able to fathom how to match them in 

order to have a common state and obtain health to match the 

energy quantization condition.                     

Numerical Illustrations 

We shall consider solving some problems applying some of 

the techniques discussed so far in this paper. 

 

Problem I 

(i) Determine the energy eigen values for a simple 

harmonic oscillator moving along the x axis with 

the characteristic frequency  . Use the WKB 

approximation method. 

(ii) Using the Rayleigh – Ritz approximation method  

and a suitable trial wave – function containing 
2 as 

parameter, given that the ground state energy of a 

simple harmonic oscillator was 

2
2 2 2

2

7 1
( )

6 24

h
E mw

m
 


    

Find the approximate ground state energy             . 

The Wentzel, Kramers and Brillouin – WKB method demands 

that we use the result of equation (2.7), i.e. 

1

0

1
2

2 ( ) , 0,1,2,
x

x
dx dx n h n      and for the 

specified simple harmonic oscillator,  

 
2 22 ( / 2)m E mw x    

and the turning points are observed to occur at 

2 2 / 2E mw x , i.e. at x = 
22 /E mw  

Applying equation (8) above, we have 
2

2

2 /
2 2 1

22 /
2 2 ( / 2) ( )

E mw

E mw
m E mw x dx n h


    

By substituting a new variable as in 

22 / cosx E mw  , then we have 

21
2 0

4
( ) sin 2 / ,

E
h n d E w

w



     and so 

1
2

( ) 2 /h n E w   

Thus,  

1
2

( )E n hw 
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By considering a trial wave function with as the ground 

energy eighen values for the simple harmonic oscillator.  
In our second question, we are required to find the 

approximate ground state energy, given that an analytical 

ground state energy of a simple harmonic oscillator  

By considering a trial wave function with 
2  parameter, we 

obtain the approximate ground state energy by the Rayleigh – 

Ritz approximation first by observing that the expectation 

value of the Hamiltonian

   

 

2
2 2 2

2

7 1ˆ ( )
6 24

h
H E mw

m
 


    

     
2

1
2 2 27 1

.
6 24

h
mw

m
 



   

At the minimum, 

 
 

2 2
2

42

( ) 7 1
0

6 24

dE h
mw

md






     

 

2
2

2 2

7 1

6 ( ) 24

h
mw

m 
  , 

Such that,  

2
2 2

2 2

7 *24
( )

6

h

m w
   and taking square roots we 

have 

 

2
2

2 2

28h

m w
   2 7

h

mw
   

Hence, by substituting 
2

0 into 
2

0( )E  we obtain the 

approximate ground state energy 

 

Problem II 

Consider a particle of mass m , determine the ground state 

energy, to the first order approximation, of a perturbed 

isotropic three dimensional harmonic oscillator with 

characteristic frequency  , given that the perturbing 

potential  

 
2ˆ brH ae  , and that the ground state of the 

oscillator is described by the wave function 
3

2
4

0 exp
2

k kr

hw hw




  
    
   

, where a, b and k are 

constants. 

With the system given, 

2
2

2 2

0

ˆ 1ˆ ˆ ˆ
2 2

brH mw r ae H H
m

      , 

where

2
2 2

0

ˆ 1ˆ
2 2

H mw r
m


   and 

2ˆ brH ae   

Then, we define the ground state energy in the absence o the 

perturbation as 

0

0

3 3

2 2
E n hw hw

 
   
 

. 

 

It is obvious, that is normalized. Therefore, the correction to 

the ground state energy, in the presence of the perturbation 

and to the first order approximation, is given by  

 
2

3
(1) 2 32
0 0 0

ˆ exp
2

k
hw

kr
E H a br d r

hw




 

  
      

  


 

Recall that in a hemi-spherically symmetric wave function, 

3 2

0
2d r r dr



   

In view of this, 

 
3

2(1) 2 2

0 2 expk
hw

k
E a r r b dr

hw



  

     
  

  

  =  
3

2

3

1
2

2
k
hw

a
k

b
hw






 
 
   

 
 

 

 
 

3
3 3

2

3

k h w
a

hw k hbw






 
  
  

  

   

3 3 3

2 2 2k hw k
a a

hw k hbw k hbw






     
      

      
 

 

3
1 2

1 ( ) ( )

0 0

0

3

2

j j

j

k
E E hw a

k hbw

 
      

 
 , 

which is the ground state energy to the first order 

approximation.  

 

Conclusion  

We have been able to study the Variational  Approximation  

Method, the semiclassical approximation method and the 

Perturbation approximation method, in which we have within 

the non-generate  class there exists the time independent 

perturbation approximation method and time-dependent 

perturbation method, each of these exudes different 

characteristics. Within the generate class of the perturbation 

approximation methods, we noticed that the PAM fails  when 

the denominators in expressions for 
( )k

nE and 
( )k

n in 

equation (20) are either zero or comparable to the mixing 

matrix element. Despite this shortfall, the PAM is most vital 

approximation methods applied in quantum mechanics and in 

general mathematical physics.  The weaknesses and strengths 

discussed in this paper, create an apple opportunity for end – 

users to make more precise choice when applying any of the 

discussed methods. 
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